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ON THE EFFECT OF CAVITATION ON THE RADIAL FORCES AND HYDRODYNAMIC
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The asymmetric flow within a volute exerts a radial force on a centrifugal

impeller. The present paper presents experimental measurements of the radial forces

on the impeller in the presence of cavitation.

NOMEN CLATU RE

[A]

A1 ,A2

22
hydrodynamic force matrix, non-dimensionalized by prim r2b 2

impeller inlet area (_r12), outlet area (2_r2b 2)

b 2 impeller discharge width (0.62 in)

{F} 6-component generalized force vector

F1,F 2 components of the instantaneous lateral force on the impeller in the

rotating dynamometer reference frame

Fx,Fy components of the instantaneous lateral force on the impeller in the fixed

23
laboratory reference frame (X,Y), non-dimensionalized by p_ r2b 2

Fox,Foy values of Fx and Fy if the impeller was located at the the origin of the

23
(X,Y) coordinate system (volute center), non-dimensionalized by p_ r2b 2

* The authors are indebted to the NASA George Marshall Space Flight Center,

Alabama for continued sponsorship of this research under contract NAS8-33108.

We are also grateful for the help given by D. Brennen.
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FN,F T components of the lateral force on the impeller normal to and tangential

to the whirl orbit, averaged over the orbit, non-dimensionalized by

22
Pn_ r2b2e

F N = (Axx + Ayy)/2 F T = (-Axy + Ayx)/2

pl,Pt I upstream static, total pressure

P2,Pt2

PI

downstream static, total pressure

static pressure at impeller inlet, Ptl - P(A_I )2/2

Pv vapor pressure of water

Q flow rate

rl,r 2 impeller inlet, discharge radius (1.594 in., 3.188 in.)

t time

(X,Y) fixed laboratory reference frame

x,y instantaneous coordinates of the impeller center in the fixed laboratory

reference frame (X,Y), non-dimensionalized by r2

radius of the circular whirl orbit

e angle of the impeller on the eccentric circle, measured from the volute

tongue in the direction of impeller rotation

density of water

cavitation number,
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?

flow coefficient based on the impeller discharge area and tip speed, --_

_r 2 A2

Pt2-Ptl

total head cofficient, p2r^

W radian frequency of the impeller (shaft) rotation

INTRODUCTION

Earlier papers (refs.l-8) have described measurements of the radial forces and

hydrodynamically induced rotordynamic coefficients of centrifugal pumps with various

impellers and volutes. All of these earlier measurements were made in the absence

of any cavitation within the pump. Yet there is some evidence that the presence of

cavitation may have a significant effect on these forces and coefficients. Indeed

some tests of the high speed pumps in the Space Shuttle Main Engine have suggested a

change in the rotordynamics when cavitation occurs (ref. 9). The present paper is a

supplement to our earlier measurements of forces and coefficients and constitutes an

exploration of the influence of cavitation.

The references 6-8 provide a complete description of the facility. Briefly,

the dynamometer, composed of two parallel plates connected by four strain gaged

posts, is mounted between the impeller and the drive shaft. It measures the six

components of a generalized hydrodynamic force vector {F] acting on the impeller.

The impeller can be subject to whirling motion in an orbit eccentric to the volute

center, in addition to the normal impeller rotation. Since the eccentric motion is

in the lateral plane, perpendicular to the impeller centerline, only the two

components of the force vector {F] in this lateral plane will be discussed.

These forces can be represented by

Refering to figure I, F and F are in the volute frame of reference, and x and y
represent the coordinates oF the impeller center measured from the volute center.

Dimensionless quantities are used throughout (see Nomenclature for definitions).

The present results are only for the case of no whirl: x and y are fixed in time.

When the impeller is located at an angular position, e, on the circular whirl orbit

of radius e, equation (1) is written as

IFxl I I + [ A ] I 1 (2)

Fox e/r 2 cos8

Fy = Foy ' {e/r 2 sine

The steady lateral forces, represented by F and F, can be considered as the
sum of two forces: a fixed force, represente_ by F^Y and F., which the impeller

would experience if located at the volute center, and _force _e to the eccentric
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displacement of the impeller, represented by a "stiffness" matrix [A]. By taking

data at four fixed eccentric positions of the impeller, 90 degrees apart, the matrix

[A] and the vector {F } can be extracted. The gravitational and buoyancy forces on
O

the rotor are subtracted out.

EXPERIMENTS

In references 6-8 results were presented for a typical impeller (impeller X), a

five bladed Byron-Jackson centrifugal impeller with a specific speed of 0.5V,

operating in a spiral volute (volute A) at various impeller speeds (_ 2000 rpm) and

flow rates. In order to test under cavitating conditions, the impeller speed was

increased to 3000 rpm and the water was substantially de-aerated.

In the following pages the results for three different flow rates are

presented: the flow rates chosen are below design (_=0.060), design (_=0.092) and

above design (_=0.i04). Cavitation performance curves for each of these flow rates

are presented in figure 2. We observe that the breakdown cavitation numbers for the

three flow rates tested are 0.17, 0.26 and 0.30 respectively.

RESULTS

Results for the radial forces, F and FO , and for the stiffness coefficientsare presented in figures 3 through A qu1_k glance will show that large changes

occur in both characteristics as the pump approaches and passes through breakdown.

Notice that the steady force shown in figures S and 4 changes in both magnitude and

direction.

Figures 3 and 4 show that for g=0.060 the magnitude of {F } decreases with

performance loss with a small change in direction. For both g_0.092 and _=0.I04,

the magnitude of {F} has a minimum with decreasing head coefficent. For each flow

coefficient, the d_rection of {F } rotates away from the tongue. For _=0.092, {Fo}
Q

rotates through more than 180 ° as the pump progresses through breakdown.

Figures 5-8 show the hydrodynamic force matrix [A] from equation (2). These

no-whirl results corrrespond to -[K] of the quadratic fit of reference 2 to whirl

data for mass, damping and stiffness matrices. The three flow coefficients exhibit

the same trends. The diagonal elements decrease with performance loss. The off-

diagonal elements first decrease slightly in magnitude with lower cavitation number

then increase with performance loss. Figure 8 indicates that the off-diagonal ele-

ments do not change monotonically with head coefficient.

In summary, cavitation affects the steady forces, both the impeller-centered

force {F } and the hydrodynamic force matrix [A], exerted upon an eccentric

impeller. U It is useful to interprete the matrix [A] in terms of the average normal

force, FN, and the tangential force, F-, acting on a whirling impeller in the limit
as the whlrl speed approaches zero. Wi_h cavitation breakdown, the normal force is

reduced while the tangential force is increased. Further tests are planned to

examine the unsteady flow effects which occur at non-zero whirl speed. More specif-

ically, the frequency dependence in the matrix [A] (the damping and added mass

components) will shortly be examined as a function of cavitation number.
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Figure I Schematic representation of the position of the impeller within the

volute. The measured forces are indicated in the rotating dynamometer

frame (as F 1, F 2 ) and in the stationary volute frame (as F x, Fy).

Figure 2
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Cavitation performance curves for the three flow coefficients: @=0.060

(below design), @=0.092 (design) and @=0.104 (above design), for volute

A/impeller X at 3000 rpm.
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Figure 3 The dependence of the magnitude and direction of the volute force, {F },

on cavitation number for the three flow coefficients: d=O.060, _=0.0_2,

$=O.104, for volute Alimpeller X at 3000 rpm.

Figure 4

,19

,95

368

27B

188

9@

@

''''''''H'''F,P1o. • -.o6o.... '....'....'....'
° PHI=.092
,*PHI=.184

=q

Q

Q • Q C
[] Q

m

&, & && &
a a a A J,_I_,

i° © {' o ©

I " " I .... I .... I .... I .... I

I ' ' ' ' I ' ' ' ' I ' ' ' ' i ' ' ' I ' ' ' ' I ' ' ' ' I '

Foan_ _ %_' ,. • ,. ,, ,,. ,,
C, @ & &_

,D

,,n 0% _= % _' _ o "d

I ' _ " I " _ " , I ,. ,. _ , I ' '. '. I I ,. , ,. ,. I ,. , ,. ,. I ,. I I I
• I I ' I I I

0,1 e,2 8,3 6.4 8,5 0,6
HERD COEF

The dependence of the magnitude and direction of the volute force, {F },

on head coefficient for the three flow coefficients: d=O.060, $=0.0_2,

_=0.104, for volute A/impeller X at 3000 rpm.

499



-i

Axx o Axy PH .
Ayx • Ayy

I I I I I I I I i I I I I I i I

o,::,_o o o o ,:, ,:, _, ,:, o _,

0 8.5 1.8 1,5
sigma

Figure 5 The dependence of the elements of the hydrodynamic force matrix, [A], on

cavitation number for $=0.060 (below design), for volute A/impeller X at

3000 rpm.

Figure 6
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The dependence of the elements of the hydrodynamic force matrix, [A], on

cavitation number for $=0.092 (at design), for volute A/impeller X at
3000 rpm.
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Figure 7
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The dependence of the elements of the hydrodynamic force matrix, [A], on

cavitation number for _=0.104 (above design), for volute A/impeller X at
SO00 rpm.
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Figure 8 The dependence of the elements of the hydrodynamic force matrix, [A], on

head coefficient for _=0.i04 (above design), for volute A/impeller X at

3000 rpm.
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